

DT-CNN: Dilated and Transposed Convolutional Neural Network Accelerator for Real-time Image Segmentation on Mobile Devices

Dongseok Im, Donghyeon Han, Sungpill Choi, Sanghoon Kang, and Hoi-Jun Yoo

School of Electrical Engineering Korea Advanced Institute of Science and Technology Daejeon, South Korea

Application for Image Segmentation

<Autonomous Driving>

- Implementation by encoder-decoder neural network

Dilated and Transposed Convolution Accelerator (DT-CNN)

• High area-efficiency: 94.1 GOPS/mm²

Implementation Results of Dilation Rate Adjustment

- Achieving high throughput by ROI-based image segmentation
- Compensation for the accuracy up to **15.8 percentage points**

[2] Random feedback weights support learning in deep neural networks (Nature 2016)

Visual Results of Image Segmentation*

	Test Image	Ground Truth	Full Size	Rol Size	This Work	Rol Size	This Work
Image							
Image Size (W x H)	288 x 288	288 x 288	288 x 288	144 x 192	144 x 192	128 x 192	128 x 192
Max. Dilation Rate	-	-	16	16	12	16	10
mloU	-	-	0.5200	0.4659	0.5105	0.4345	0.5161
ΔmloU	-	-	0%	- 10.4%	- 1.8%	- 16.4%	-0.7%
FPS	-	-	68.4	201		211	

• Achieving **211 frame-per-seconds** with high accuracy

*Freiburg sitting people dataset

